Table 2. Geometric parameters ($\left(\AA{ }^{\circ}\right.$)

$\mathrm{Ru}-\mathrm{Cl}$	$2.3944(21)$	$\mathrm{Ru}-\mathrm{P}(2)$	$2.3421(22)$
$\mathrm{Ru}-\mathrm{C}(1)$	$2.259(5)$	$\mathrm{P}(1)-\mathrm{C}(1 M)$	$1.834(7)$
$\mathrm{Ru}-\mathrm{C}(2)$	$2.236(5)$	$\mathrm{P}(1)-\mathrm{C}(111)$	$1.832(5)$
$\mathrm{Ru}-\mathrm{C}(3)$	$2.227(5)$	$\mathrm{P}(1)-\mathrm{C}(121)$	$1.837(5)$
$\mathrm{Ru}-\mathrm{C}(4)$	$2.240(5)$	$\mathrm{P}(2)-\mathrm{C}(2 M)$	$1.831(10)$
$\mathrm{Ru}-\mathrm{C}(5)$	$2.263(5)$	$\mathrm{P}(2)-\mathrm{C}(3 M)$	$1.792(10)$
$\mathrm{Ru}-\mathrm{C}(6)$	$2.273(5)$	$\mathrm{P}(2)-\mathrm{C}(211)$	$1.831(5)$
$\mathrm{Ru}-\mathrm{P}(1)$	$2.3509(18)$		
$\mathrm{Cl}-\mathrm{Ru}-\mathrm{P}(1)$	$88.36(7)$	$\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(116)$	$123.5(3)$
$\mathrm{Cl}-\mathrm{Ru}-\mathrm{P}(2)$	$88.83(7)$	$\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(122)$	$117.9(4)$
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2)$	$92.29(7)$	$\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(126)$	$122.0(4)$
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(1 M)$	$116.49(22)$	$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(2 M)$	$113.9(3)$
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(111)$	$111.90(16)$	$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(3 M)$	$121.3(3)$
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(121)$	$115.15(17)$	$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(211)$	$111.36(18)$
$\mathrm{C}(1 M)-\mathrm{P}(1)-\mathrm{C}(111)$	$100.4(3)$	$\mathrm{C}(2 M)-\mathrm{P}(2)-\mathrm{C}(3 M)$	$102.3(5)$
$\mathrm{C}(1 M)-\mathrm{P}(1)-\mathrm{C}(121)$	$106.0(3)$	$\mathrm{C}(2 M)-\mathrm{P}(2)-\mathrm{C}(211)$	$103.8(4)$
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$	$105.27(22)$	$\mathrm{C}(3 M)-\mathrm{P}(2)-\mathrm{C}(211)$	$102.3(4)$
$\mathrm{P}(1)-\mathrm{C}(1 M)-\mathrm{C}\left(1 M^{\prime}\right)$	$114.8(5)$	$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(212)$	$119.3(4)$
$\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(112)$	$116.3(3)$	$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(216)$	$120.7(4)$
$\mathrm{C}\left(1 M^{\prime}\right)$ is related to $\mathrm{C}(1 M)$ by inversion through (0,0,	$\left.\frac{1}{2}\right)$.		

The title compound was prepared by mixing $\left[\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mathrm{Me}_{2} \mathrm{PPh}\right)\right.$ RuCl_{2}] and dppe (2:1 molar ratio) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (5:1 v / v) in the presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}$; crystals were grown from $\mathrm{MeNO}_{2} / \mathrm{MeOH}$. The crystal was pre-aligned using oscillation and Weissenberg photography and mounted with the b axis parallel to the spindle of the two-circle instrument. The ω-scan width was $[1.0+0.5(\sin \mu / \tan \theta)]^{\circ}$. The structure was solved and refined using SHELX76 (Sheldrick, 1976). The metal position was deduced from a Patterson synthesis and the remaining nonH atoms located by subsequent refinement and ΔF synthesis. Refinement was by full-matrix least squares. Disorder in the PF_{6}^{-}anion was modelled by allowing split occupancies for four of the F atoms.

Fig. 1 was produced using an interactive version of ORTEPII (Mallinson \& Muir, 1985) and molecular-geometry calculations were performed using CALC (Gould \& Taylor, 1985).

We thank the SERC for support.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55372 (27 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1003]

References

Blake, A. J., Fotheringham, J. D. \& Stephenson, T. A. (1992). Acta Cryst. C48, 1485-1487.
Blake, A. J., Fotheringham, J. D., Stephenson, T. A., Hambling, S. G. \& Sawyer, L. (1991). Acta Cryst. C47, 648-650.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gould, R. O. \& Taylor, P. (1985). CALC. Program for molecular geometry calculations. Univ. of Edinburgh, Scotland.
Mallinson, P. D. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1993). C49, 144-147

Dimeric Copper(II) 2,2-Dimethylpropanoate Adducts with 3- or 4-Picoline

Toyoaki Fujita and Shigerd Ohba*

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3, Kohoku-ku, Yokohama 223, Japan

TADASHI TOKII
Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840, Japan

Michinobu Kato

13-30, Takatorikita 4, Asaminami-ku, Hiroshima, 731-01, Japan

(Received 9 June 1992; accepted 24 August 1992)

Abstract

The structures of tetrakis(μ-2,2-dimethylpropa-noato- O, O^{\prime})-bis(3- or 4-picoline)dicopper(II) benzene solvate, $\left[\mathrm{Cu}\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOO}\right\}_{2} \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right]_{2} . \mathrm{C}_{6} \mathrm{H}_{6}$, have been determined by single-crystal X -ray diffraction. The binuclear $\mathrm{Cu}^{\text {II }}$ complexes have a cage structure with a square-pyramidal coordination geometry around the Cu atoms. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distances are 2.657 (3) and 2.648 (5) \AA for 3 - and 4-picoline adducts, respectively. In the crystal, benzene molecules are accommodated statistically in a hollow running along the c axis. The magneto-structural correlation could not be determined because of the easy removal of the benzene molecules from the crystals under the reduced pressure conditions at which the magnetic susceptibility measurements were made.

Comment

The magnetic properties of dimeric copper(II) 2,2dimethylpropanoate complexes were reported by Muto, Hirashima, Tokii, Kato \& Suzuki (1986), and some of them were remeasured later by one of the authors (TT). An unexpectedly small $-2 J$ value ($325 \mathrm{~cm}^{-1}$) was observed for the 4 -picoline adduct compared with related compounds (pyridine $368 \mathrm{~cm}^{-1}$, 2- and 3-picoline adducts 372 and $363 \mathrm{~cm}^{-1}$ respectively). The smaller $-2 J$ value of the 4-picoline adduct was tentatively attributed to the higher basicity of the 4-picoline compared with other similar ligands (Muto et al., 1986). However, the $-2 J$ values of the $2-, 3$ - and 4 -picoline adducts of
(c) 1993 International Union of Crystallography
the dimeric copper(II) acetates are almost the same ($-2 J=332,326$ and $333 \mathrm{~cm}^{-1}$ respectively; Yamanaka, Uekusa, Ohba, Saito, Iwata, Kato, Tokii, Muto \& Steward, 1991). It is expected that the reduction of the $-2 J$ value of the 4 -picoline adduct of the dimeric copper(II) 2,2-dimethylpropanoate may be attributed to some deformation of the molecular structure in the crystal. Unfortunately, the present study could not give any answer to this problem because the magnetic susceptibility measurements were only made on samples which had lost benzene from the crystal under reduced pressure. The benzene molecules were not located on the difference syntheses although the density and efflorescence of the crystals indicated the presence of benzene which may be distributed randomly in the hollow (see Fig. 2).

The structures of the binuclear complexes are shown in Fig. 1. The complex with 3-picoline (I) has a twofold axis perpendicular to the $\mathrm{Cu} \cdots \mathrm{Cu}$ axis, and that with 4 -picoline (II) has crystallographic $2 / m$ symmetry with the twofold axis through the $\mathrm{Cu} \cdots \mathrm{Cu}$

Fig. 1. ORTEP drawings (Johnson, 1965) of the molecular structures with the thermal ellipsoids scaled at the 25% probability level.
axis. The crystal structures are shown in Fig. 2. The arrangement of the complexes in both crystals is quite unique with the picoline ligands stacked nearly parallel to each other along the c axis. The cell parameter c in (I) and (II) [11.303 (2) and 11.111 (2) \AA respectively] is therefore roughly six times the van der Waals radius of the aromatic C atom ($1.77 \AA$).

(I) 3-Picoline $\mathrm{Me}_{3} \mathrm{C}$
(II) 4-Picoline $\mathrm{Me}_{3} \mathrm{C}$

The atomic coordinates are listed in Table 1, and selected bond lengths and bond angles in Table 2.

Fig. 2. Projections of the crystal structures along the c axis.

Experimental

Compound (I)

Crystal data
$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$.-
$\mathrm{C}_{6} \mathrm{H}_{6}$
$M_{r}=795.64$
Trigonal
$P 3_{1} 21$ (or $P 3_{2} 21$)
$a=18.246$ (2) \AA
$c=11.303$
(2) \AA
$V=3258.7(7) \AA^{3}$
$Z=3$
$D_{x}=1.22 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.22(2) \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Rigaku AFC-5 four-circle diffractometer
$\theta-2 \theta$ scans
Absorption correction:
by integration from crystal shape
$T_{\min }=0.711, T_{\max }=$ 0.779

2816 measured reflections
2685 independent reflections
1420 observed reflections $\left[\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)\right]$

Refinement

Refinement on F
Final $R=0.077$
$w R=0.105$
$S=3.50$
1420 reflections
200 parameters
H-atom parameters not refined

Compound (II)

Crystal data
$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$.$\mathrm{C}_{6} \mathrm{H}_{6}$
$M_{r}=795.64$
Rhombohedral (hexagonal setting)
$R \overline{3} m$
$a=31.902$ (4) \AA
$c=11.111$ (2) \AA
$V=9793$ (3) \AA^{3}
$Z=9$
$D_{x}=1.21 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Rigaku AFC-5 four-circle diffractometer
$\theta-2 \theta$ scans

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 20 reflections
$\theta=10-15^{\circ}$
$\mu=1.02 \mathrm{~mm}^{-1}$
$T=300$ (2) K
Prism
$0.45 \times 0.40 \times 0.25 \mathrm{~mm}$ Green
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 25$
$k=0 \rightarrow 25$
$l=0 \rightarrow 13$
5 standard reflections monitored every 100 reflections intensity variation: 2.8%
$w=\left[\sigma^{2}\left(F_{o}\right)+\left(0.015 F_{o}\right)^{2}\right]^{-1}$
$(\Delta / \sigma)_{\max }=0.36$
$\Delta \rho_{\max }=0.73 \mathrm{e} \AA^{-3}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Absorption correction:
by integration from cr
shape
$T_{\min }=0.493, T_{\max }=$
0.708
2370 measured reflections 2245 independent reflections 905 observed reflections

$$
\left[|F|_{o}>3 \sigma\left(|F|_{o}\right)\right]
$$

Refinement

Refinement on F
Final $R=0.072$
$w R=0.094$
$S=3.51$
905 reflections
146 parameters
H-atom parameters not re-
fined

$$
\begin{aligned}
k & =0 \rightarrow 37 \\
l & =0 \rightarrow 13
\end{aligned}
$$

5 standard reflections
monitored every 100 reflections
intensity variation: 19.7\%
$w=\left[\sigma^{2}\left(F_{o}\right)+\left(0.015 F_{o}\right)^{2}\right]^{-1}$

$$
(\Delta / \sigma)_{\max }=0.36
$$

$\Delta \rho_{\text {max }}=0.46 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$

	x	y	z	$B_{\text {eq }}$
(1) \quad c ${ }^{\text {c }}$				
Cu	0.4555 (1)	0.5386 (1)	0.0179 (2)	3.9
O(1)	0.3795 (7)	0.4571 (7)	-0.1007 (10)	4.9
O(2)	0.5239 (7)	0.6168 (8)	-0.1104 (10)	6.0
O(3)	0.5537 (7)	0.6054 (7)	0.1293 (10)	5.4
O(4)	0.3966 (7)	0.4556 (7)	0.1383 (10)	5.1
N	0.3906 (9)	0.6091 (9)	0.0527 (10)	3.9
C(1)	0.3952 (11)	0.4084 (11)	-0.1528 (13)	4.8
C(2)	0.3197 (15)	0.3398 (17)	-0.2374 (19)	9.4
C(3)	0.3398 (24)	0.2663 (20)	-0.2672 (31)	18.1
C(4)	0.3431 (27)	0.4143 (35)	-0.3582 (22)	22.5
C(5)	0.2289 (15)	0.3169 (24)	-0.1943 (34)	19.2
C(6)	0.5859 (11)	0.6128 (10)	-0.1492 (14)	5.0
C(7)	0.6493 (12)	0.6855 (13)	-0.2330 (16)	6.9
C(8)	0.7283 (13)	0.6785 (15)	-0.2620 (22)	9.2
C(9)	0.6652 (17)	0.7670 (12)	-0.1787 (23)	10.9
C(10)	0.5977 (19)	0.6761 (19)	-0.3490 (17)	10.6
C(11)	0.4333 (11)	0.6906 (10)	0.0732 (14)	4.1
C(12)	0.3932 (13)	0.7376 (11)	0.0915 (15)	5.7
C(13)	0.3122 (12)	0.7033 (13)	0.0914 (15)	5.3
C(14)	0.2633 (10)	0.6127 (12)	0.0695 (14)	4.6
C(15)	0.3036 (10)	0.5681 (11)	0.0513 (14)	4.6
C(16)	0.1706 (13)	0.5662 (14)	0.0604 (19)	7.9
(II)				
Cu	0.4585 (1)	0.0	0.5	5.6
O(1)	0.4453 (2)	-0.0388 (3)	0.6479 (7)	6.9
$\mathrm{O}(2)$	0.4955 (2)	0.0614 (3)	0.5882 (7)	7.2
N	0.3919 (4)	0.0	0.5	5.7
C(1)	0.4737 (1)	-0.0525	0.6895 (14)	6.0
C(2)	0.4562 (1)	-0.0877	0.7948 (15)	8.6
C(3)	0.4730 (1)	-0.0540	0.9010 (20)	23.3
C(4)	0.4040 (5)	-0.1102 (7)	0.8137 (21)	18.0
C(5)	0.5396 (1)	0.0791	0.6125 (14)	5.5
C(6)	0.5650 (1)	0.1301	0.6696 (17)	7.7
C(7)	0.5588 (1)	0.1176	0.8069 (18)	15.5
C(8)	0.5353 (6)	0.1570 (5)	0.6377 (20)	13.9
C(9)	0.3895 (4)	0.0404 (4)	0.4827 (11)	6.4
C(10)	0.3480 (4)	0.0435 (4)	0.4822 (11)	7.5
C(11)	0.3054 (4)	0.0	0.5	7.8
C(12)	0.2563 (5)	0.0	0.5	12.2

Table 2. Geometric parameters (\AA, ${ }^{\circ}$)

(1)			
$\mathrm{Cu} \cdot \cdots \mathrm{Cu}^{\text {i }}$	2.657 (3)	$\mathrm{Cu}-\mathrm{N}$	2.176 (20)
$\mathrm{Cu}-\mathrm{O}(1)$	1.967 (10)	$\mathrm{O}(1)-\mathrm{C}(1)$	1.214 (26)
$\mathrm{Cu}-\mathrm{O}(2)$	1.979 (11)	$\mathrm{O}(2)-\mathrm{C}(6)$	1.249 (26)
$\mathrm{Cu}-\mathrm{O}(3)$	2.024 (11)	$\mathrm{C}(1)-\mathrm{O}(4)^{\text {i }}$	1.235 (28)
$\mathrm{Cu}-\mathrm{O}(4)$	1.916 (11)	$\mathrm{C}(6)-\mathrm{O}(3)^{\text {i }}$	1.313 (27)
(II)			
$\mathrm{Cu} \cdot . \cdot \mathrm{Cu}^{\mathrm{ii}}$	2.648 (5)	$\mathrm{Cu}-\mathrm{N}$	2.125 (13)
$\mathrm{Cu}-\mathrm{O}(1)$	1.972 (8)	$\mathrm{O}(1)-\mathrm{C}(1)$	1.273 (11)
$\mathrm{Cu}-\mathrm{O}(2)$	1.969 (8)	$\mathrm{O}(2)-\mathrm{C}(5)$	1.255 (7)
(I)			
$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(1)$	100.6 (6)	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(4)$	173.0 (5)
$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(2)$	92.3 (6)	$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}(4)$	90.7 (4)
$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(3)$	96.4 (6)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(4)^{\text {i }}$	128.4 (16)
$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(4)$	94.8 (6)	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{O}(3)^{\text {i }}$	127.8 (15)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	89.9 (4)	$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(1)$	123.3 (13)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(3)$	163.0 (4)	$\mathrm{Cu}-\mathrm{O}(2)-\mathrm{C}(6)$	118.6 (14)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(4)$	89.0 (4)	$\mathrm{Cu}-\mathrm{O}(3)-\mathrm{C}(6)^{\text {i }}$	122.9 (12)
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(3)$	88.4 (4)	$\mathrm{Cu}-\mathrm{O}(4)-\mathrm{C}(1)^{\text {i }}$	121.4 (13)
(I)			
$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(1)$	95.8 (4)	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(2)^{\text {iii }}$	168.3 (4)
$\mathrm{N}-\mathrm{Cu}-\mathrm{O}(2)$	95.9 (4)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(1)^{\text {ii }}$	124.1 (11)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	92.5 (3)	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{O}(2)^{\text {ij }}$	127.1 (8)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(1)^{\text {iii }}$	168.5 (4)	$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(1)$	123.5 (5)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)^{\text {iii }}$	86.3 (3)	$\mathrm{Cu}-\mathrm{O}(2)-\mathrm{C}(5)$	122.3 (7)
Symmetry codes: (i) $y, x,-z$; (ii) $1-x+y, y, z$; (ii) $x-y,-y, 1-z$.			

Compound (I): The density was measured by flotation in a tetrabromoethane-cyclohexane mixture. The specimen was coated with adhesive to prevent efflorescence. Laue group $\overline{3} m 1$ and systematic absences, $00 l$ for $l \neq 3 n$, indicated an enantiomorphic pair of the space groups $P 3_{1} 21$ (No. 152) and $P 3_{2} 21$ (No. 154). Assuming the space group to be $P 3_{1} 21$, the structure was solved based on the Patterson function using SHELX86 (Sheldrick, 1986). The benzene molecule could not be located on difference syntheses. The enantiomorphic space group $P 3_{2} 21$ gave almost the same R factor. The large R value may be due to the disorder of the benzene molecule, which was not taken into account in the refinement. The $B_{\text {eq }}$ values for the methyl C atoms (9.2-22.5 \AA) are abnormally large, suggesting disorder. The bond lengths and angles involving the $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ groups were obtained with low accuracy. The structure was refined using UNICSIII (Sakurai \& Kobayashi, 1979) on a FACOM M780/10 computer at Keio University.

Compound (II): The density was measured by flotation in a tetrabromoethane-cyclohexane mixture. The intensities of five standard reflections decayed by 20%; this was corrected for. Laue group $\overline{3} m 1$ and systematic absences, $h k l$ for $-h+k+l \neq 3 n$, indicated the space group $R 32$ (No. 155), $R 3 m$ (No. 160) or $R \overline{3} m$ (No. 166). At first, the structure was solved in R32. The positions of the Cu atoms on the twofold axis were obtained by direct methods and those of the other non-H atoms by Fourier syntheses. The R value was reduced to 0.072 by introducing the anisotropic thermal parameters. At this stage of the refinement, crystallographic mirror symmetry of the binuclear complex was expected. The space group was then changed to $R \overline{3} m$ to reduce the number of independent non- H atoms from 26 to 16 . The refinement gave the same residual factor $R=0.072$ with normal bond lengths and reasonable thermal parameters. The benzene molecule could not be located on the difference syntheses. The large R value may be due to the disorder of the benzene molecule. The structure was solved using SHELX86 and refined using UNICSIII with all calculations being performed on a FACOM M-780/10 computer at Keio University.

This work was supported by the Kurata research grant to one of the authors (SO).

Lists of structure factors, anisotropic thermal parameters, and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55490 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS1018]

References

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Muto, Y., Hirashima, N., Tokii, T., Kato, M. \& Suzuki, I. (1986). Bull. Chem. Soc. Jpn, 59, 3672-3674.
Sakurai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Houkoku, 55, 69-77.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Yamanaka, M., Uekusa, H., Ohba, S., Saito, Y., Iwata, S., Kato, M., Tokii, T., Muto, Y. \& Steward, O. W. (1991). Acta Cryst. B47, 344-355.

Acta Cryst. (1993). C49, 147-151

FeCl_{3} Behavior in Acetonitrile: Structures of $\left[\mathrm{FeCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}_{4}\right]\left[\mathrm{FeCl}_{4}\right]\right.$ and $\left[\mathrm{AlCl}\left(\mathrm{CH}_{3} \mathrm{CN}_{5}\right)_{5}\right]\left[\mathrm{FeCl}_{4}\right]_{2} . \mathrm{CH}_{3} \mathrm{CN}$

Y. Gao, J. Guery and C. Jacoboni

Laboratoire des Fluorures - URA 449, Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France
(Received 10 March 1992; accepted 23 September 1992)

Abstract

The structures of the complexes $\left[\mathrm{FeCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]$ [FeCl_{4}], tetrakis(acetonitrile)dichloroiron(III) tetrachloroferrate $(1-)$, and $\left[\mathrm{AlCl}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{5}\right]\left[\mathrm{FeCl}_{4}\right]_{2}$.$\mathrm{CH}_{3} \mathrm{CN}$, pentakis(acetonitrile)chloroaluminium(III) bis-[tetrachloroferrate(1-)] acetonitrile solvate, have been determined from single-crystal X -ray diffraction data. $\left[\mathrm{FeCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{FeCl}_{4}\right]$ is built up from $\left[\mathrm{FeCl}_{2}-\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]^{+}$octahedra and $\left[\mathrm{FeCl}_{4}\right]^{-}$tetrahedra whereas $\left[\mathrm{AlCl}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{5}\right]\left[\mathrm{FeCl}_{4}\right]_{2} \cdot \mathrm{CH}_{3} \mathrm{CN}$ is composed of $[\mathrm{AlCl}-$ $\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{5}\right]^{2+}$ octahedra, $\left[\mathrm{FeCl}_{4}\right]^{-}$tetrahedra and uncoordinated $\mathrm{CH}_{3} \mathrm{CN}$ molecules.

Comment

Very pure starting fluorides are required for fluoride glasses of high optical performance (France, Carter,
(C) 1993 International Union of Crystallography

